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In this report, we will obtain Ia. (I-1)* from the primitive
equations of motion for betatron oscillations, and in particular,
we will find expressions for the varlables vy, p and the parameter
A in terms of the natural variables x, x' = dx/d® and the accel-
erator parameters. We take for x the radial displacement from the
equilibrium orbit, and O = s/R, where s is the distance along the
equllibrium orbit measured from the extraction septum, and 2R
1s the length of the equilibrium orbit.

The linear equaticn of moticon

x" 4+ g(@)x =0 (1)

can be deduced from the Hamiltonian
= 1x'2 + lg(o)x? (2)
2 2

where x' = dx/d® 1s the momentum conjugate to x. With sextupole,

octupole,...berms present, the Hamiltonian 1is

= } 1 ' .
h h, + h3(x, x', 0) + ha(x, x', 0) + s (3)

where h3, hu are cubic and quartic in x, x', and periodie In 6.

The sclution of the linearized equation can be expressed

in terms of the Flocuet solution

"Equations from report I of the series under tnis title will be
numbered in this fashion in this report. Equation numbers with-
out Roman prefixes refer to the present report.



_oo FN-134

2040

x = wellvO + ¥ - /2

and its complex conjugate, where w{0), V{0) are pericdiec with

period 21 if misalignments are included, otherwise with period
2ﬂ/NS where NS = 0 1s the number of superperiods. Choosing an
appropriate linear combination of x and x*, we may write the

general solution in the form

W

X Awsin(ve + ¥ + ),

X! Aw'sin{vo + ¢ + ) + aw~leos(vo + ¥ + 7)),
where A, ¢ are arbitrary amplitude and phase. The matrix H(e)

which carries x, x' from 8 to @ + 27 is, from Eg. (5),

cos2mv — asin2mv Bsin2mv
M(O) = )
. .
_J;%%ﬁi_SlHEWU Cos2my + o sin27wv
1)
where a = ww', B = we = (v + w')_l-

It is convenient to choose the additive constant in ¥
so that ¢ (0 = 0) = 0:

a
p(o) = (3=1 - v)go.
/

We now can write the solution (5) 1in the form
¥ = Pwsiny + Xwcosy,
x' = P(w'siny + w-lcosy) + X(w'cosy - wotsiny),

where

>4
il

Asin(ve + ),

as]
il

Acos(vO + ).

We can readily verify that the Poisson bracket

(4)

(6)

(7)

(8)

(9)

(10)
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- 2% 3x' = 1, (11)

a2
et
Q2
av]
a»
a2

so that X, P are also canonical variables which clearly satisfy
equations derived from the Hamiltonian
Hy = % v(x2 + p?), (12)
2
It is easily verified that the transformation (8) indeed leads
to the Hamiltcenian (12). We note that at 0 = 0,

= = 1/2
X = wOX = 80 X,

x' = wy"lP + wix = 50'1/2(P + ax), (13)
P

X SO X,

P o= 8,1 2% - ap "1/,

Since the transformation (9) is canonical in any case, and
since its generating function is quadratic, we may carry out the
same transformation on the nonlinear Hamiltonian (3) merely by
replacing h, by H2 and making the substitution (98) in hg, hu,...

We novw suppose that there is a distribution of sextupoles

around the machine azimuth, giving rise to fields

[}

B ~F(0)(x° - z2), (14

Z

B -2F(6)xz2.

X

Here z is the vertical coordinate, and F(0) is the sextupole
strength. The contributions c¢f the sextupole terms to the equa-

tions of motion are given by

linear terms + @RF(0) (x2 _ 72y

%" =
Ty w
{(15)
z" = linear terms - 28RF(Q) x,.
Myw

e are primarily interested in the radial motion, but we also
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need tco insure that the z-motion is not unduly disturbed by the
extraction scheme. The cuble terms in the Hamlltonlan which give

the sextupole terms in Egs. (18) are

h3 - eﬁii@) (XZ2 - 1/3X3)- (16)

The iinear z-motion can be treated in precise analogy with
the treatment above of the x-motion. We are led to a cononical
transformation z, z' > 7, PZ analogous to the transformation (9).

We will ignore for the moment the z-ferm in h as the other

3’
term is the one which drives the extraction resonance.
Before calculating H3, we note that we may introduce ca-

nonlcal polar coordinates p, v 1n the X, P-plane via the trans-

formation
X = (20)Y/2 sinvy,
(17)
P = (2p)1/2 COS Y.
It is readilly verified that the necessary Pcisson bracket con-
dition is satisfied., We will transform between X, P and vy, p
whenever convenlent. In particular, we have from Eq. (9):
x = (2p8)*2sin (y + y), (18)
80 that the amplitude of x-oscillaticns is given by (298)1/2.
We now make the substitution (9) or {(18) in the x-term
in Eg. (16):
H, = ERE(O) (20p)3/2[sin (3y + 30) - 3 sin (y + ¥)]. (19)

3 12Myw

3

We assume that the sextupoles are located at azimuths Oj, J =1



-5 FH-134
2040

2,..4, and put

F(O) = § F,86(0 - 0,). (20)
S J
We Fourier analyze H3:

_ eR im(e - 8.) 3/2r . | _ U
Hy = STe Eije J’(2pBy) [sin(3y + 3uj) 3 sin(y + wj>1

(21)
= (2 )3/200 H 2os{3y - mO + n Y+ H cos(y - m@ + n )
I P e 733m 33m 31m % 31mp
where
, i _ _eR 3/2 i(mo, + 3p, - n/2)
T33me "33m =omwmg 7857 Ty T (22)
: eR 2 1(mo, + + w/2

It can be seen from Eq. (3) that the $j are equal at homologous
peints arcund the accelerator. In particular, if the azimuth of

a.

sextupole J is homologcous to the extraction septum, wj

The resonance v = mO/B is driven by the term

H (2p)3/2 cos (3y - m 0O + n (23)
¢

33m ) 33my) "

If v is very close to mO/3, this will be the dominant sextupole
term. All other terms can be transformed into higher orders in

p by a suiltable change of variables. In a lafter report we will
carry out this transformatlon in order to determine the resulting
fourth order terms in Hu which distort the separatrices found

in report I. The resulting variables after fthe transformation
are only slightly different from X, P or p, y defined above,

provided no other nearby resonance is strongly driven by a term
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in Eg. (21). The term in HBlm can drive the integral resonance

v = m; hence it is desirable to have several sextupoles at care-
fully c¢hosen azlmuths Gj and with appropriate amplitudes Fj 50

as to make H31m vanish for at least the nearest integer m to v.

If the Oj are all homologous, so that the Bj and wj are all equal,

then H (and H also) vanishes if F(®) has no mth Fourier

33m 31im
component. This can be arranged for n-1 compcnents 1f there are
n sextupoles with suitably chosen F‘, Gj' However the require-
ment that they bte at homologous points may necessitate up to

2n sextupoles, %o eliminate n-1 harmonlics and provide a desired
amplitude and phase of the harmonie My Although the terms In
Eg. {(21) cannot drive a half-integral resonance, any deviation of
the equilibrium orbit from the center of the sextupoles will in-
troduce quadrupole terms which can. The terms driving the reso-
nance v = m/2 can be eliminated by eliminating the mth harmonic

from F(0) provided that the @, are homologous and the orbit de-

J
viations are identical in each. Otherwise the elimination of Hoom
is more complicated and may depend on the orbit deviation.

The term xz2 in Eg. (16) drives resonances of the type
v, 2vz = m. We can readily calculate the amplitude Hligm of the
corresponding driving terms in the same way as above, It will
probably be desirable so to place the zextupoles as also to
eliminate or minimize the terms that drive the one or two sum
and difference resonances clesest to the working point.

It should be noted that one advantage of working at a

third-integral resonance is that this resonance selects cout the

quadratlic terms in the equations of motion, the term (23) having
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a dominant effect, while terms which drive other rescnances have
relatively less effect. If we try to extract on an Integral
resonance, on the other hand, depending nevertheless on sextu-
pole terms to increase the amplitude at the extraction point,
then not only sextupole ferms, but also gradient terms and field
bumps can affect the orblt strongly. The resconance v = m is also
v = 2n/2 and v = 3m/3. If the equilibrium orbit is centered in
the sextupoles, then the sextupole terms, which drive v = 3m/3
may be dominant. However, any deviation of the orbvit from the
center of the sexfupoles wlll introduce gradient and field bumops
which drive v = 2m/2 and v = m. Thus the integral extraction
process can be extremely sensitive to orbit deviations.
We now write the approximate Hamiltonian for v near the
third integral resonance by addine the term (23) to the quadratic

Hamiltonian H, given by Fgq. (12):

2

- = 3/2 -
H = vp + H33m0(2p) cos (3y mOO + n33m0)' (24

We introduce a final transformation o,y - p,y via the gen-

erating function

S = p(y - 1/3mOO),
p = 93/3y = p, (25)
y = 95/3p = v - 1/3m.0.

The new Hamiltonian is

H + 33/30

[gan
1

1}

(v - my/3)p + H (20)372 cos (3y + n33m0)- (26)

33mg
This is the form introduced in report I, where we dropped

the bar from p. The coefficient A = H33m is given by Eg. (22)
Q
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and the azimuths Oj and sextupole strengths Fj must be chosen
s¢ that n33m0 =
Note that the barred phase plane o, ¥y, or X, P, rotates
with angular velocity m0/3 relative to the X, P-plane, returning
to its original position every three revolutions. Since the

curves in Fig. I-~1 have a three-fold symmetry, the phase plot

shhown in that figure repeats every revolution.



